Saturday 25 January 2014

Sugar-powered biobattery has 10 times the energy storage of lithium: Your smartphone might soon run on enzymes

Zhang's glucose-powered enzymatic fuel cell (Virginia Tech)
As you probably know, from sucking down cans of Coke and masticating on candy, sugar — glucose, fructose, sucrose, dextrose — is an excellent source of energy. Biologically speaking, sugar molecules are energy-dense, easy to transport, and cheap to digest. There is a reason why almost every living cell on Earth generates its energy (ATP) from glucose. Now, researchers at Virginia Tech have successfully created a sugar-powered fuel cell that has an energy storage density of 596 amp-hours per kilo — or “one order of magnitude” higher than lithium-ion batteries. This fuel cell is refillable with a solution of maltodextrin, and its only by products are electricity and water. The chief researcher, Y.H. Percival Zhang, says the tech could be commercialized in as soon as three years.
Now, it’s not exactly news that sugar is an excellent energy source. As a culture we’ve probably known about it since before we were Homo sapiens. The problem is, unless you’re a living organism or some kind of incendiary device, extracting that energy is difficult. In nature, an enzymatic pathway is used — a production line of tailor-made enzymes that meddle with the glucose molecules until they become ATP. Because it’s easy enough to produce enzymes in large quantities, researchers have tried to create fuel cells that use artificial “metabolism” to break down glucose into electricity (biobatteries), but it has historically proven very hard to find the right pathway for maximum efficiency and to keep the enzymes in the right place over a long period of time.
Enzymatic fuel cell diagram

No comments:

Disqus

comments powered by Disqus