Saturday 18 January 2014

Restoring the function of arms that have been disconnected from the brain

ArmArm MusclesArmSimAdvances in the control of prosthetic arms, or even exoskeletal arms, continue to amaze. Yet someone with a severe neck injury doesn’t need any such device since the greatest arm they could imagine is sitting right there hanging off their shoulder — but unable to perform. Efforts to control an artificial arm may seem impotent to these folks, when a bridge spanning just a couple centimeters of scar tissue in the spinal column can not even be made. A way forward is now taking shape at Case Western University in Ohio. Researchers there are gearing up to combine the Braingate cortical chip developed at Brown University with their own Functional Electric Stimulation (FES) platform.
It has long been known that electrical stimulation can directly control muscles. The problem is that it is fairly inaccurate, and can be painful or damaging. Stimulating the nerves directly using precisely positioned arrays is a much better approach. One group of Case Western researchers recently demonstrated a remarkable device called a nerve cuff electrode that can be placed around small segments of nerve. They used the cuff to provide an interface for sending data from sensors in the hand back to the brain using sensory nerves in the arm. With FES, the same kind of cuff electrode can also be used to stimulate nerves going the other direction, in other words, to the muscles.

No comments:

Disqus

comments powered by Disqus