When you flex a muscle in your arm, it’s not the muscle that’s shrinking, but the cells that comprise it. Each cell lining the muscle’s length has its own limited contractile ability, one driven by tiny motor and ratchet proteins that crumple up a cell and refuse to let it relax. Rather than being a single continuous muscular action, your bicep contracts as a result of millions of tiny, discreet contractions all working in concert. That being the case, it’s always been something of a misnomer to refer to robot muscles asmuscles, per-se — despite being visually similar, they are really just servos, or hydraulic pumps, or whatever else. This week marks the first proof of concept for an attempt to change that, to make usefully strong artificial muscles that actually work like muscles — with all the advantages and disadvantages that come with it.
The research comes from the US Department of Energy’s Berkeley Lab, and it focuses on an amazing material called vanadium dioxide. It’s already used widely in electronics and other industries, mostly because it has an amazing ability to switch between being an electrical insulator and conductor, based purely on temperature.
At exactly 67 degrees Celsius, the crystal structure undergoes a phase shift that allows the free flow of electrons through the system — and it also physically deforms the metal. That physical change occurs with incredible force — as seen in the video below, a coil of vanadium dioxide can launch objects 50 times heavier than itself over a distance five times its length within 60 milliseconds.
No comments:
Post a Comment